Answer:
Minimize C =
![13x + 3y](https://img.qammunity.org/2020/formulas/mathematics/college/4jwgibkor0irx5nxelbi60wpvbw7xuecid.png)
![12x + 14y \geq 21](https://img.qammunity.org/2020/formulas/mathematics/college/rorjwvlmgo84nn11408lawyylukok7l38g.png)
![15x + 20y \geq 37](https://img.qammunity.org/2020/formulas/mathematics/college/n5pbzaz0pzynx7diqn9lrlvn5lsdmpqye9.png)
and x ≥ 0, y ≥ 0.
Plot the the lines on the graph and find the feasible region
-- Blue
--- Green
So, the boundary points of feasible region are (-3.267,4.3) , (0,1.85) and (2.467,0)
Substitute the value in Minimize C
Minimize C =
![13x + 3y](https://img.qammunity.org/2020/formulas/mathematics/college/4jwgibkor0irx5nxelbi60wpvbw7xuecid.png)
At (-3.267,4.3)
Minimize C =
![13(-3.267) + 3(4.3)](https://img.qammunity.org/2020/formulas/mathematics/college/iia6hrny8vq35eg0s8w7r7xukndtqslss7.png)
Minimize C =
![-29.571](https://img.qammunity.org/2020/formulas/mathematics/college/xuqn6lld6jwj5c13jn542pxmd1c77u7buv.png)
At (0,1.85)
Minimize C =
![13(0) + 3(1.85)](https://img.qammunity.org/2020/formulas/mathematics/college/wsyxr53c3brp1tcgcxflxda39i8xeobiqk.png)
Minimize C =
![5.55](https://img.qammunity.org/2020/formulas/mathematics/college/fprgob4ulc5sabjz16zks21n8otmhi6pkv.png)
At (2.467,0)
Minimize C =
![13(2.467) + 3(0)](https://img.qammunity.org/2020/formulas/mathematics/college/pul896yx4u9f1xe5fxwx19uc84f2fa2ksr.png)
Minimize C =
![32.071](https://img.qammunity.org/2020/formulas/mathematics/college/rqf3cu0iyfgotin91odsyyxm5p1p663ukl.png)
So, the optimal value of x is -3.267
So, the optimal value of y is 4.3
So, the minimum value of the objective function is -29.571