Answer:
a)
Reduced Row Echelon:
![\left[\begin{array}{cccc}1&1/2&0&0\\0&1&7/4&0\\0&0&1&-4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/6av3mrtqv9b83pjfaqme7dgcdynt93so71.png)
Solution to the system:
![x_3=-4\\x_2=-(7)/(4)x_3=7\\x_1=-(1)/(2)x_2=-(7)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/uepnfxg86ngh74vx2uexzaslliyyeij6q6.png)
b)
Reduced Row Echelon:
![\left[\begin{array}{cccc}4&3&0&7\\0&0&2&-17\\0&0&2&-17\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/oa1wdmcaxpv8wclzjr6l3yagrkoqre04zf.png)
Solution to the system:
x_2 is a free variable, meaning that it has infinite possibilities and therefore the system has infinite number of solutions.
Explanation:
To find the reduced row echelon form of the matrices, let's use the Gaussian-Jordan elimination process, which consists of taking the matrix and performing a series of row operations. For notation, R_i will be the transformed column, and r_i the unchanged one.
a)
![\left[\begin{array}{cccc}0&4&7&0\\2&1&0&0\\0&3&1&-4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/td6poow3a9cp01f70qgsu58ccxl9sznpom.png)
Step by step operations:
1. Reorder the rows, interchange Row 1 with Row 2, then apply the next operations on the new rows:
![R_1=(1)/(2)r_1\\R_2=(1)/(4)r_2](https://img.qammunity.org/2020/formulas/mathematics/college/arz6javdopmaci30gijpj32l1e3o4700sh.png)
Resulting matrix:
![\left[\begin{array}{cccc}1&1/2&0&0\\0&1&7/4&0\\0&3&1&-4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/dizx94g9jgn9hu963dssa5eq1fvpm2oxk0.png)
2. Set the first row to 1
![R_3=-3r_2+r_3](https://img.qammunity.org/2020/formulas/mathematics/college/z23rqndaoxutvrdlo2t8mhzqy4udhs7cr1.png)
Resulting matrix:
![\left[\begin{array}{cccc}1&1/2&0&0\\0&1&7/4&0\\0&0&1&-4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/6av3mrtqv9b83pjfaqme7dgcdynt93so71.png)
3. Write the system of equations:
![x_1+(1)/(2)x_2=0\\x_2+(7)/(4)x_3=0\\x_3=-4](https://img.qammunity.org/2020/formulas/mathematics/college/c7c14t6qgccuik4v508wrj3yq7lj5rxv1h.png)
Now you have the reduced row echelon matrix and can solve the equations, bottom to top, x_1 is column 1, x_2 column 2 and x_3 column 3:
![x_3=-4\\x_2=-(7)/(4)x_3=7\\x_1=-(1)/(2)x_2=-(7)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/uepnfxg86ngh74vx2uexzaslliyyeij6q6.png)
b)
![\left[\begin{array}{cccc}4&3&0&7\\8&6&2&-3\\4&3&2&-10\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/ld6swom972t8ou9el2lmbebr9vferr0d6r.png)
1.
![R_2=-2r_1+r_2\\R_3=-r_1+r_3](https://img.qammunity.org/2020/formulas/mathematics/college/iuzrqjnuiio80sd41zix15q0cvj9w6isvd.png)
Resulting matrix:
![\left[\begin{array}{cccc}4&3&0&7\\0&0&2&-17\\0&0&2&-17\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/oa1wdmcaxpv8wclzjr6l3yagrkoqre04zf.png)
2. Write the system of equations:
![4x_1+3x_2=7\\2x_3=-17](https://img.qammunity.org/2020/formulas/mathematics/college/p6ps2pbusln7nngqyrftf9nffmgn4dcl12.png)
Now you have the reduced row echelon matrix and can solve the equations, bottom to top, x_1 is column 1, x_2 column 2 and x_3 column 3:
x_2 is a free variable, meaning that it has infinite possibilities and therefore the system has infinite number of solutions.