Answer:
Sound Intensity at microphone's position is
![9.417* 10^(- 4) W/m^(2)](https://img.qammunity.org/2020/formulas/physics/college/6bq6m5kb3nftvoei9h9a1ltmm98v2lyo5i.png)
The amount of energy impinging on the microphone is
![9.417* 10^(- 8) W/m^(2)](https://img.qammunity.org/2020/formulas/physics/college/u4xgzbocj8jy0oj1gxy3496iq61z9yxf3l.png)
Solution:
As per the question:
Emitted Sound Power,
![P_(E) = 32.0 W](https://img.qammunity.org/2020/formulas/physics/college/8mf6ogft2jiu8h028okp7au3tepifo8f9e.png)
Area of the microphone,
![A_(m) = 1.00 cm^(2) = 1.00* 10^(- 4) m^(2)](https://img.qammunity.org/2020/formulas/physics/college/qbh7ydstmwhlx4b7t79llvevcnshddpzo4.png)
Distance of microphone from the speaker, d = 52.0 m
Now, the intensity of sound,
at a distance away from the souce of sound follows law of inverse square and is given as:
![I_(s) = (P_(E))/(Area) = (P_(E))/(4\pi d^(2))](https://img.qammunity.org/2020/formulas/physics/college/xqe4nljina7tienk8ggf8zfy5se6c0o9ni.png)
![I_(s) = (32.0)/(4\pi (52.0)^(2)) = 9.417* 10^(- 4) W/m^(2)](https://img.qammunity.org/2020/formulas/physics/college/y9uahv8ibdua9ykao1o1pbwwk4e2t9i849.png)
Now, the amount of sound energy impinging on the microphone is calculated as:
If
be the Incident Energy/
![m^(2)/s](https://img.qammunity.org/2020/formulas/physics/college/3lw8vdbhbh9asrmgl0n3vcwkjhuzsuatuc.png)
Then
The amount of energy incident per 1.00
is:
![I_(s)(1.00* 10^(- 4)) = 9.417* 10^(- 4)* 1.00* 10^(- 4) = 9.417* 10^(- 8) J](https://img.qammunity.org/2020/formulas/physics/college/nv2vli0neu5zzqonvbmw7nhhnvsr5dnylx.png)