Answer:
The set of solutions is
![\{\left[\begin{array}{c}a\\b\\x\\y\\z\end{array}\right] = \left[\begin{array}{c}-26+503y+543z\\-37+655y+724z\\-4+80y+90z\\y\\z\end{array}\right] : \text{y, z are real numbers}\}](https://img.qammunity.org/2020/formulas/mathematics/college/wmdiklnm3clqrber0m0fzbvzhgfvf9vz4g.png)
Explanation:
The matrix associated to the problem is
and the vector of independent terms is (3,1,-1)^t. Then the matrix equation form of the system is Ax=b.
The vector equation form is
.
Now we solve the system.
The aumented matrix of the system is
.
Applying rows operations we obtain a echelon form of the matrix, that is
![\left[\begin{array}{cccccc}1&-1&2&-8&1&3\\0&1&-8&-15&-4&-5\\0&0&1&-80&-9&-4\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/647rlifmvxrmblxjyr25sjwaqqj85y2zmo.png)
Now we solve for the unknown variables:
- x-80y-90z=-4 then x=-4+80y+90z
- b-8x-15y-4z=-5, b-8(-4+80y+90z)-15y-4z=-5 then b=-37+655y+724z.
- a-b+2x-8y+z=3, a-(-37+655y+724z)+2(-4+80y+90z)-8y+z=3, then a=-26+503y+543z
Since the system has two free variables then has infinite solutions.
The set of solutions is
![\{\left[\begin{array}{c}a\\b\\x\\y\\z\end{array}\right] = \left[\begin{array}{c}-26+503y+543z\\-37+655y+724z\\-4+80y+90z\\y\\z\end{array}\right] : \text{y, z are real numbers}\}](https://img.qammunity.org/2020/formulas/mathematics/college/wmdiklnm3clqrber0m0fzbvzhgfvf9vz4g.png)