35.4k views
0 votes
Rewrite the following system of linear equations in matrix equation form and in vector equation form. Solve the system.

a - b + 2x - 8y + z =3

2a - b - 4x + y - 2z = 1

-4a + b + 4x - 3x - z = -1

User Mavix
by
7.1k points

1 Answer

5 votes

Answer:

The set of solutions is
\{\left[\begin{array}{c}a\\b\\x\\y\\z\end{array}\right] = \left[\begin{array}{c}-26+503y+543z\\-37+655y+724z\\-4+80y+90z\\y\\z\end{array}\right] : \text{y, z are real numbers}\}

Explanation:

The matrix associated to the problem is
A=\left[\begin{array}{ccccc}1&-1&2&-8&1\\2&-1&-4&1&-2\\-4&1&4&-3&-1\end{array}\right] and the vector of independent terms is (3,1,-1)^t. Then the matrix equation form of the system is Ax=b.

The vector equation form is
a\left[\begin{array}{c}1\\2\\-4\end{array}\right]+b\left[\begin{array}{c}-1\\-1\\1\end{array}\right] + x\left[\begin{array}{c}2\\-4\\4\end{array}\right]+y\left[\begin{array}{c}-8\\1\\-3\end{array}\right] + z\left[\begin{array}{c}1\\-2\\-1\end{array}\right]=\left[\begin{array}{c}3\\1\\-1\end{array}\right].

Now we solve the system.

The aumented matrix of the system is
\left[\begin{array}{cccccc}1&-1&2&-8&1&3\\2&-1&-4&1&-2&1\\-4&1&4&-3&-1&-1\end{array}\right].

Applying rows operations we obtain a echelon form of the matrix, that is
\left[\begin{array}{cccccc}1&-1&2&-8&1&3\\0&1&-8&-15&-4&-5\\0&0&1&-80&-9&-4\end{array}\right]

Now we solve for the unknown variables:

  • x-80y-90z=-4 then x=-4+80y+90z
  • b-8x-15y-4z=-5, b-8(-4+80y+90z)-15y-4z=-5 then b=-37+655y+724z.
  • a-b+2x-8y+z=3, a-(-37+655y+724z)+2(-4+80y+90z)-8y+z=3, then a=-26+503y+543z

Since the system has two free variables then has infinite solutions.

The set of solutions is
\{\left[\begin{array}{c}a\\b\\x\\y\\z\end{array}\right] = \left[\begin{array}{c}-26+503y+543z\\-37+655y+724z\\-4+80y+90z\\y\\z\end{array}\right] : \text{y, z are real numbers}\}

User Solx
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories