68.6k views
5 votes
First-order linear differential equations

1. dy/dt + ycost = 0 (Find the general solution)

2. dy/dt -2ty = t (Find the solution of the following IVP)

1 Answer

2 votes

Answer:

(a)
(dy)/((2y+1))=tdt (b)
y=(e^(t^2)+e^(2c)-1)/(2)

Explanation:

(1) We have given
(dy)/(dt)+ycost=0


(dy)/(dt)=-ycost


(dy)/(y)=-costdt

Integrating both side


lny=-sint+c


y=e^(-sint)+e^(-c)

(2)
(dy)/(dt)-2ty=t


(dy)/(dt)=2ty+t


(dy)/(dt)=t(2y+1)


(dy)/((2y+1))=tdt

On integrating both side


(ln(2y+1))/(2)=(t^2)/(2)+c


ln(2y+1)={t^2}+2c


2y+1=e^(t^2)+e^(2c)


y=(e^(t^2)+e^(2c)-1)/(2)

User TvStatic
by
5.3k points