132k views
2 votes
A student standing on the ground throws a ball straight up. The ball leaves the student's hand with a speed of 13.0 m/s when the hand is 2.30 m above the ground. How long is the ball in the air before it hits the ground?

User Ves
by
7.9k points

1 Answer

1 vote

Answer:

2.82 s

Step-by-step explanation:

The ball will be subject to the acceleration of gravity which can be considered constant. Therefore we can use the equation for uniformly accelerated movement:

Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2

Y0 is the starting position, 2.3 m in this case.

Vy0 is the starting speed, 13 m/s.

a will be the acceleration of gravity, -9.81 m/s^2, negative because it points down.

Y(t) = 2.3 + 13 * t - 1/2 * 9.81 * t^2

It will reach the ground when Y(t) = 0

0 = 2.3 + 13 * t - 1/2 * 9.81 * t^2

-4.9 * t^2 + 13 * t + 2.3 = 0

Solving this equation electronically gives two results:

t1 = 2.82 s

t2 = -0.17 s

We disregard the negative solution. The ball spends 2.82 seconds in the air.

User Yessy
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.