Answer:
2.82 s
Step-by-step explanation:
The ball will be subject to the acceleration of gravity which can be considered constant. Therefore we can use the equation for uniformly accelerated movement:
Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2
Y0 is the starting position, 2.3 m in this case.
Vy0 is the starting speed, 13 m/s.
a will be the acceleration of gravity, -9.81 m/s^2, negative because it points down.
Y(t) = 2.3 + 13 * t - 1/2 * 9.81 * t^2
It will reach the ground when Y(t) = 0
0 = 2.3 + 13 * t - 1/2 * 9.81 * t^2
-4.9 * t^2 + 13 * t + 2.3 = 0
Solving this equation electronically gives two results:
t1 = 2.82 s
t2 = -0.17 s
We disregard the negative solution. The ball spends 2.82 seconds in the air.