Answer:
The magnitude of the resultant force is equal to 0.0216 N
The direction is along the negative y axis
Step-by-step explanation:
According to the exercise data:
q1 = 9x10^-6 C (0,1)
q2 = -9x10^-6 C (0,-1)
q = 7x10^6 C (6,0)
the distance between load q1 and load q will be equal to:
![r_(1) = \sqrt{(0-1)^(2)+(6-0)^(2) }= 6.08 m](https://img.qammunity.org/2020/formulas/physics/college/e6343aysfrsg584jnp8awrdcrn0h260o1q.png)
The same way to calculate the distance between q2 and q:
![r_(2) =\sqrt{(0-(-1))^(2)+(6-0)^(2) } =6.08 m](https://img.qammunity.org/2020/formulas/physics/college/kptw11q35exv2sihy8kvgpsuvs16ij630t.png)
The force on q due to the load q1, is calculated with the following equation:
![F_(1)=(K*q_(1)*q )/(r1^(2) ) *(cos45i-sin45j)=(8.987559x10^(9)*9x10^(-6) *7x10^(-6) )/(6.08^(2) )*(cos45i-sin45j)=0.0153*(0.707i-0.707j)=0.0108N(i-j)](https://img.qammunity.org/2020/formulas/physics/college/2r9w3a1dtr3lajckyym8taykttg284xzv2.png)
The same way to force F2:
F2 = (8.987559x10^9*-9x10^-6*7x10^-6))/(6.08^2)*(cos45i-sin45j) = 0.0108 N(i-j)
The resultant force:
F = F1 + F2 = 0.0108 N *(-2j) = - 0.0216 N j
The magnitude is equal to 0.0216 N
The direction is along the negative y axis