Answer:
The magnitude of electric field is 22.58 N/C
Solution:
Given:
Force exerted in upward direction,
![\vec{F_(up)} = 3.50* 10^(- 5) N](https://img.qammunity.org/2020/formulas/physics/college/wk69yxjw39jlmuyr027kiuwew1gkyk3jyb.png)
Charge, Q =
![- 1.55\micro C = - 1.55* 10^(- 6) C](https://img.qammunity.org/2020/formulas/physics/college/anki201sqtamn6wavw9ul51uggui183pwa.png)
Now, we know by Coulomb's law,
![F_(e) = \frac{1}{4\pi\epsilon_(o)(Qq)/(R^(2))]()
Also,
Electric field,
![E = \frac{1}{4\pi\epsilon_(o)(q)/(R^(2))]()
Thus from these two relations, we can deduce:
F = QE
Therefore, in the question:
![\vec{E} = (\vec F_(up))/(Q)](https://img.qammunity.org/2020/formulas/physics/college/ihprxanauw9oubkuenf4sbisjoy3qgf0co.png)
![\vec{E} = (3.50* 10^(- 5))/(- 1.55* 10^(- 6))](https://img.qammunity.org/2020/formulas/physics/college/72qylvigylmn2ag49daa983x5nmooo7eqt.png)
![\vec{E} = - 22.58 N/C](https://img.qammunity.org/2020/formulas/physics/college/omnmgh8htmxtvbso5kqzn0wnjyld4yekea.png)
Here, the negative side is indicative of the Electric field acting in the opposite direction, i.e., downward direction.
The magnitude of the electric field is:
![|\vec{E}| = 22.58\ N/C](https://img.qammunity.org/2020/formulas/physics/college/8njbqytupx8yc49qfafwy1w0enmp5jpobl.png)