Answer:
Option d - 204 m
Explanation:
Given : The atmospheric pressures at the top and the bottom of a building are read by a barometer to be 96.0 and 98.0 kPa. If the density of air is 1.0 kg/m³.
To find : The height of the building ?
Solution :
We have given atmospheric pressures,
![P_{\text{top}}=96\ kPa](https://img.qammunity.org/2020/formulas/mathematics/college/lfixp8xcavn66n7fp2b0eiwh2fl6cvnrk7.png)
![P_{\text{bottom}}=98\ kPa](https://img.qammunity.org/2020/formulas/mathematics/college/3eo9elix7l4tu0t1bja8p213dc759qaqz9.png)
The density of air is 1.0 kg/m³ i.e.
![\rho_a=1\ kg/m^3](https://img.qammunity.org/2020/formulas/mathematics/college/9wedgza0osq91c3rw4nfdysjv4892cu7qn.png)
Atmospheric pressure reduces with altitude,
The height of the building is given by formula,
![H=(\triangle P)/(\rho_a* g)](https://img.qammunity.org/2020/formulas/mathematics/college/qkw3qq94rsjbenf5kuoyj4cfbrlt4hpdw9.png)
![H=\frac{P_{\text{bottom}}-P_{\text{top}}}{\rho_a* g}](https://img.qammunity.org/2020/formulas/mathematics/college/qdmkt1yz9syfcgzsj2q9bmfh0j5u36wqu6.png)
![H=((98-96)* 10^3)/(1* 9.8)](https://img.qammunity.org/2020/formulas/mathematics/college/h0bqild8atfp2vm8s9a2javi7fviij3m09.png)
![H=(2000)/(9.8)](https://img.qammunity.org/2020/formulas/mathematics/college/d0q6tjvwmqkyjjm8issrraetj74cc09xbe.png)
![H=204\ m](https://img.qammunity.org/2020/formulas/mathematics/college/4svf208rz5y9gc1vg8rzt2qbm4li5ocs8g.png)
Therefore, Option d is correct.
The height of the building is 204 meter.