Answer:
a) The x value of the point where the two equations intersect in terms of a is
![x=(40)/(4+5a)](https://img.qammunity.org/2020/formulas/mathematics/college/ajlwpqvqu38nuglpslbglq4rehk0zqldy6.png)
b) The value of the functions at the point where they intersect is
![(10 (28 + 15 a))/(4 + 5 a)](https://img.qammunity.org/2020/formulas/mathematics/college/tzkoxn75o78ph0j6xwcrv67fmi8mpout6s.png)
c) The partial derivative of f with respect to
is
and the partial derivative of f with respect to
is
![(\partial f)/(\partial x) = -5x](https://img.qammunity.org/2020/formulas/mathematics/college/swwq2oj7extiqv679cjy6oq00fpqk020pe.png)
d) The value of
and
![(\partial f)/(\partial a)(3,2) = -15](https://img.qammunity.org/2020/formulas/mathematics/college/lc59w7spzd0y4xefycu8pmtio7l2yzlfp2.png)
e)
and
![\upsilon_2=-(3)/(4) = -0.75](https://img.qammunity.org/2020/formulas/mathematics/college/uw65bn6lhnvhlu1kf7fo0htmbietzuiebl.png)
f) equation
and
![\upsilon_2 = (-5a\cdot a)/(70-5ax)=(a^2)/(ax-14)](https://img.qammunity.org/2020/formulas/mathematics/college/ohyjsleaobpuzxvujjkkjmvril0mho7bcp.png)
Explanation:
a) In order to find the
we just need to equal the equations and solve for
:
![f(x,a)=g(x)\\70-5xa = 30+4x\\70-30 = 4x+5xa\\40 = x(4+5a)\\\boxed {x = (40)/(4+5a)}](https://img.qammunity.org/2020/formulas/mathematics/college/1crpofie6g1ozbor1pqmx7b96zmgum4rhv.png)
b) Since we need to find the value of the function in the intersection point we just need to substitute the result from a) in one of the functions. As a sanity check , I will do it in both and the value (in terms of
) must be the same.
![f(x,a)=70-5ax\\f((40)/(4+5a), a) = 70-5\cdot a \cdot (40)/(4+5a)\\f((40)/(4+5a), a) = 70 - (200a)/(4+5a)\\f((40)/(4+5a), a) = (70(4+5a) -200a)/(4+5a)\\f((40)/(4+5a), a) =(280+350a-200a)/(4+5a)\\\boxed{ f((40)/(4+5a), a) =(10(28+15a))/(4+5a)}](https://img.qammunity.org/2020/formulas/mathematics/college/qtnleoa4xbxzqq6ml08evsdgdx7e65f2s8.png)
and for
:
![g(x)=30+4x\\g((40)/(4+5a))=30+4\cdot (40)/(4+5a)\\g((40)/(4+5a))=(30(4+5a)+80)/(4+5a)\\g((40)/(4+5a))=(120+150a+80)/(4+5a)\\\boxed {g((40)/(4+5a))=(10(28+15a))/(4+5a)}](https://img.qammunity.org/2020/formulas/mathematics/college/874tokwsiyg5sac23ajtp1d435f0oc156l.png)
c)
![(\partial f)/(\partial x) = (70-5xa)^(')=70^(') - (\partial (5xa))/(\partial x)=0-5a\\(\partial f)/(\partial x) =-5a](https://img.qammunity.org/2020/formulas/mathematics/college/8u1matrlyz7jn4aisam0mjxrol8brdkrbe.png)
![(\partial f)/(\partial a) = (70-5xa)^(')=70^(') - (\partial (5xa))/(\partial a)=0-5x\\(\partial f)/(\partial a) =-5x](https://img.qammunity.org/2020/formulas/mathematics/college/sp1y9o9vd10rjcam6kb7v9qncr7ndg29vb.png)
d) Then evaluating:
![(\partial f)/(\partial x) =-5a\\(\partial f)/(\partial x) =-5\cdot 2=-10](https://img.qammunity.org/2020/formulas/mathematics/college/gdsvn5vkeq4ckjw3z2urgf4zd7nf6j2oth.png)
![(\partial f)/(\partial a) =-5x\\(\partial f)/(\partial a) =-5\cdot 3=-15](https://img.qammunity.org/2020/formulas/mathematics/college/zf9ymbpbb257cmy0j3fuugvuohhw1v5p64.png)
e) Substituting the corresponding values:
![\upsilon_1 = (\partial f(3,2))/(\partial x)\cdot (3)/(f(3,2)) \\\upsilon_1 = -10 \cdot (3)/(40) = -(3)/(4) = -0.75](https://img.qammunity.org/2020/formulas/mathematics/college/hg1q2gwym2xwg7adoph1j7xgyahn8n83kl.png)
![\upsilon_2 = (\partial f(3,2))/(\partial a)\cdot (3)/(f(3,2)) \\\upsilon_2 = -15 \cdot (2)/(40) = -(3)/(4) = -0.75](https://img.qammunity.org/2020/formulas/mathematics/college/whornpq23dg78hvodogb56l13lq5t66cng.png)
f) Writing the equations:
![\upsilon_1=(\partial f (x,a))/(\partial x)\cdot (x)/(f(x,a))\\\upsilon_1=-5a\cdot (x)/(70-5xa)\\\upsilon_1=(-5ax)/(70-5ax)=(-5ax)/(-5(ax-14))\\\boxed{\upsilon_1=(ax)/(ax-14) }](https://img.qammunity.org/2020/formulas/mathematics/college/6hmuah67sv2nbdbs734efvd291fmiezwgf.png)
![\upsilon_2=(\partial f (x,a))/(\partial x)\cdot (a)/(f(x,a))\\\upsilon_2=-5a\cdot (a)/(70-5xa)\\\upsilon_2=(-5a^2)/(70-5ax)=(-5a^2)/(-5(ax-14))\\\boxed{\upsilon_2=(a^2)/(ax-14) }](https://img.qammunity.org/2020/formulas/mathematics/college/2y43ha7zbnr0hygw13myy32c20jh40q7fo.png)