Answer:
a) 0°
b) 180°
c) 90°
Step-by-step explanation:
Hello!
To solve this question let a be the vector whose length is 15 m and b the vector of length 20 m
So:
|a | = 15
|b | = 20
Since we are looking for the angle between the vectors we need to calculate the length of the sum of the two vectors, this is:
![|a+b|^(2) = |a|^(2) + |b|^(2) + 2 |a||b|cos(\theta)](https://img.qammunity.org/2020/formulas/physics/college/n0xn9swb6r7b8qjy7zid3o6njn81hbtqbv.png)
Now we replace the value of the lengths:
![|a+b|^(2) = 15^(2) + 20^(2) + 2*15*20*cos(\theta)](https://img.qammunity.org/2020/formulas/physics/college/gzmlbn88exwapd0g9lbjdg600xa2qz5nbs.png)
--- (1)
Now, if:
a) |a+b| = 35
First we can see that 20 + 15 = 35, so the angle must be 0, lets check this:
![35^(2) = 625 + 600*cos(\theta)](https://img.qammunity.org/2020/formulas/physics/college/eunnlrzheixrtaki1a978o9o4fow48hb9f.png)
![1225 = 625 + 600*cos(\theta)](https://img.qammunity.org/2020/formulas/physics/college/bt26svmgi0jti0dv5b39muj838wxu8icj2.png)
![600 = 600*cos(\theta)](https://img.qammunity.org/2020/formulas/physics/college/d2dx88uvnr73igm788uaprsbse27ya2wvq.png)
![1= cos(\theta)](https://img.qammunity.org/2020/formulas/physics/college/fyugppvm0c35innli31zkgykg6m887ujz5.png)
and :
![\theta = arccos(1)](https://img.qammunity.org/2020/formulas/physics/college/5q5iffd1yb9vhkm4mj7g54eiti3vkvincc.png)
θ = 0
b) |a+b|=5
From eq 1 we got:
--- (2)
![\theta = arccos(-1)](https://img.qammunity.org/2020/formulas/physics/college/89o2plydpodh32z2ukblnbshjhwcmktdbl.png)
θ = π or θ = 180°
c) |a+b|=25
![\theta = arccos(-1)](https://img.qammunity.org/2020/formulas/physics/college/89o2plydpodh32z2ukblnbshjhwcmktdbl.png)
θ = π/2 or θ = 90°