Answer:
The recoil speed is
![2.207* 10^(4) m/s](https://img.qammunity.org/2020/formulas/physics/college/qgb4f6kwb8ua03axb5kxromwxs8dhbycun.png)
Solution:
Wavelength of a blue-green photon,
![\lambda_(BG) = 488 nm = 488* 10^(- 9) m](https://img.qammunity.org/2020/formulas/physics/college/i7u3d34ciy33idg6gl767fulr7m7vk9uj6.png)
Now, the energy associated with the blue-green photon:
![E_(BG) = (hc)/(\lambda_(BG))](https://img.qammunity.org/2020/formulas/physics/college/vx3sun1ppe08nmvudx1m6hatjpg7hdtm4t.png)
where
h = Planck's constant
C = speed of light ion vacuum
![E_(BG) = (6.626* 10^(- 34)* 3* 10^(8))/(488* 10^(- 9))](https://img.qammunity.org/2020/formulas/physics/college/41va20oxyzdh4f6ltjvy34q16kj7z44azc.png)
![E_(BG) = 4.07* 10^(- 19) J](https://img.qammunity.org/2020/formulas/physics/college/fjxu2ihgh7l8g5aywn19d2rfnvw6l859hv.png)
Also, we know that the recoil speed can be calculated by the KInetic energy which is equal to the Energy of the blue-green photon:
![KE_(H) =(1)/(2)m_(p)v_(H)](https://img.qammunity.org/2020/formulas/physics/college/r9is7p5x3y0u3fuavz5qnpcnkcdxvwvudp.png)
where
= velocity of Hydrogen atom
= mass of H-atom
Now,
![KE_(H) =(1)/(2)m_(p)(v_(H))^(2)](https://img.qammunity.org/2020/formulas/physics/college/qkbpukxbns2evxq9sjq2gjnt2nx2o39unv.png)
![4.07* 10^(- 19) =(1)/(2)* 1.67* 10^(- 27)* (v_(H))^(2)](https://img.qammunity.org/2020/formulas/physics/college/nz8fcyrqamqwtt8wz2s5iqtvbvpho5tmhn.png)
![v_(H) = \sqrt(4.87* 10^(8)) = 2.207* 10^(4) m/s](https://img.qammunity.org/2020/formulas/physics/college/74lxmkc2wbig240chu5vlqwvyht3cupjca.png)