Answer: a) 0.1587 b) 0.0618
Explanation:
Let x be the random variable that represents the monthly demand for a product.
Given : The monthly demand for a product is normally distributed with mean = 700 and standard deviation = 200.
i.e.
and
![\sigma=200](https://img.qammunity.org/2020/formulas/mathematics/college/35aw1uyrlur4brkz49k71nse8apvt472bx.png)
a) Using formula
, the z-value corresponds to x= 900 will be :
![z=(900-700)/(200)=1](https://img.qammunity.org/2020/formulas/mathematics/college/j92ojdutwe17ku054npaexyk19o7zlonhn.png)
Now, by using the standard normal z-table , the probability demand will exceed 900 units in a month :-
![P(z>1)=1-P(z\leq1)=1-0.8413=0.1587](https://img.qammunity.org/2020/formulas/mathematics/college/ho8hg7yzoojy0br9uwie6t220gwjo5x1kt.png)
Hence, the probability demand will exceed 900 units in a month=0.1587
a) Using formula
, the z-value corresponds to x= 392 will be :
![z=( 392-700)/(200)=-1.54](https://img.qammunity.org/2020/formulas/mathematics/college/x9rk4chqh2zdflblfuezs8hsw88bghze1h.png)
Now, by using the standard normal z-table , the probability demand will be less than 392 units in a month :-
![P(z<-1.54)=1-P(z<1.54)=1-0.9382=0.0618](https://img.qammunity.org/2020/formulas/mathematics/college/87iid2jiyglwzsrogh8uu9inu6avkknt1h.png)
Hence, the probability demand will be less than 392 units in a month = 0.0618