Answer:
6.88 mA
Step-by-step explanation:
Given:
Resistance, R = 594 Ω
Capacitance = 1.3 μF
emf, V = 6.53 V
Time, t = 1 time constant
Now,
The initial current, I₀ =
![\frac{\textup{V}}{\textup{R}}](https://img.qammunity.org/2020/formulas/physics/college/35bmevbdzm0506bkt9ix2vd6rbuwrzb28b.png)
or
I₀ =
![\frac{\textup{6.53}}{\textup{594}}](https://img.qammunity.org/2020/formulas/physics/college/hhcislnzd1hcb5epqgjgwaxwuo66nyagee.png)
or
I₀ = 0.0109 A
also,
I =
![I_0[1-e^{-(t)/(\tau)}]](https://img.qammunity.org/2020/formulas/physics/college/o1zl67snigzaqd2o1x19hhxqibywotayzg.png)
here,
τ = time constant
e = 2.717
on substituting the respective values, we get
I =
![0.0109[1-e^{-(\tau)/(\tau)}]](https://img.qammunity.org/2020/formulas/physics/college/anr5v9ioy1foehlb6hpvuddfpsqe7sghnx.png)
or
I =
or
I = 0.00688 A
or
I = 6.88 mA