Answer:14.72 m/s
Step-by-step explanation:
Given
Initial velocity (u)=16.6 m/s
![\theta =40.9^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/4q5y6ssq0r94l102b061fue65ejvwkj7u2.png)
Horizontal velocity component (
)=16.6cos40.9=12.54 m/s
As the ball comes down so its vertical displacement is zero except 3 m elevation
Thus
![v_y=√(\left ( 16.6sin40.9\right )^2+2\left ( -9.81\right )\left ( 3\right ))](https://img.qammunity.org/2020/formulas/physics/college/1mrwl5oaor9yih9lupxlajlpyvmosfs9ig.png)
![v_y=√(10.868^2-58.86)](https://img.qammunity.org/2020/formulas/physics/college/u6rbrbjdd1xx1zxwlvruauz78cirk0rkn8.png)
![v_y=√(59.253)](https://img.qammunity.org/2020/formulas/physics/college/8frkvquiycpwsnu0qg811aqb3m3sc0blwn.png)
![v_y=7.69 m/s](https://img.qammunity.org/2020/formulas/physics/college/5o434gdjnpqgctt6bp2cvzn1rvtlfcjpsl.png)
there will be no change is horizontal velocity as there is no acceleration
Therefore Final Velocity
![v=√(u_x^2+v_y^2)](https://img.qammunity.org/2020/formulas/physics/college/dsl3b9wn9g75g2ssrjdrwvtd1d77rqqkei.png)
![v=√(12.54^2+7.69^2)](https://img.qammunity.org/2020/formulas/physics/college/sje7asvi2ezq4ghex7t79zs1907bc8l379.png)
v=14.72 m/s