Answer:
equation of plane, 5x+3y-z-36=0
Distance of point (2,2,2) from plane = 4.05 units
Explanation:
Given,
Plane passing through the point = (8, -2, 0)
Let's say,
![x_1\ =\ 8](https://img.qammunity.org/2020/formulas/mathematics/college/yl4gfkdghmw5z54oco8slgvwrdts96ij8k.png)
![y_1\ =\ -2](https://img.qammunity.org/2020/formulas/mathematics/college/5rtrbv7chwe9jky2cb4eh4nvt4h15x4tty.png)
![z_1\ =\ 0](https://img.qammunity.org/2020/formulas/mathematics/college/nxcgvpx5rnozekgq39l65ok1qghkncil20.png)
Plane perpendicular to the vector, a= 5i + 3j- k
Since, the vector is perpendicular to the plane, hence the equation of plane can be given by
![(5i + 3j- k).((x-x_1)i+(y-y_1)j+(z- z_1)k)=\ 0](https://img.qammunity.org/2020/formulas/mathematics/college/zv8io75m63qc3iglv3hdkoov3ofofn0bhz.png)
![=>(5i + 3j- k).((x-8)i+(y+2)j+(z-0)k)=\ 0](https://img.qammunity.org/2020/formulas/mathematics/college/qomcb8smgylmhij15nl3ujh9fzolz1ls57.png)
![=>\ 5(x-8)+3(y+2)-z=0](https://img.qammunity.org/2020/formulas/mathematics/college/3vzdh9okcjl9iefaw8eiiua10c1kuly3oz.png)
![=>\ 5x\ -\ 40\ +\ 3y\ +\ 6\ -\ z\ =\ 0](https://img.qammunity.org/2020/formulas/mathematics/college/hsb4yzi4medvr64yep1v2238ijdsxihsy4.png)
![=>\ 5x\ +\ 3y\ -\ z\ -\ 36\ =\ 0](https://img.qammunity.org/2020/formulas/mathematics/college/i7di8mi197k669lu2cbzx1wrv4ppxeamg5.png)
Hence, the equation of plane can be given by, 5x+3y-z-36=0
Now, we have to calculate the distance of the point O(2,2,2) from the plane 5x+3y-z-36=0
Let's say,
a= 5, b= 3, c= -1, d=-36
![x_0=2,\ y_0=2,\ z_0=2](https://img.qammunity.org/2020/formulas/mathematics/college/k4exkc1c90iviir199g1thsdxxww6nkan9.png)
So, distance of a point from the plane can be given by,
![d=(ax_0+by_0+cz_0+d)/(√(a^2+b^2+c^2))](https://img.qammunity.org/2020/formulas/mathematics/college/x8cz4l0lwnh3hbew0w895mckja18jp9zn7.png)
![=(\left |5* 2+3* 2+(-1)* 2-36\right |)/(√(5^2+3^2+(-1)^2))](https://img.qammunity.org/2020/formulas/mathematics/college/nxnc2aiajqofzkrw9tl7o3jj2666i15yle.png)
![=(24)/(√(35))](https://img.qammunity.org/2020/formulas/mathematics/college/e94mxikjx9ngdjfihhlywk98035kw7h2q2.png)
= 4.05 units
So, the distance of the point O(2,2,2) from the given plane will be 4.05 units.