Answer:
88
Explanation:
We are given that in arithmetic sequence , the nth term
is given by the formula
![A_n=a_1+(n-1)d](https://img.qammunity.org/2020/formulas/mathematics/college/ezkmrhk22g9aqfaxt92d7eects6gabe7ds.png)
Where
![a_1=first term](https://img.qammunity.org/2020/formulas/mathematics/college/wdue52iaxi5z8v06ew4ruxr9zounxbywn8.png)
d=Common difference
In an geometric sequence, the nth term is given by
![a_n=a_1r^(n-1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3bu33cf4utvx7df4b6a244pceeh3kcfttw.png)
Where r= Common ratio
1,4,7,10,..
We have to find 30th term.
![a_1=1,a_2=4,a_3=7,a_4=10](https://img.qammunity.org/2020/formulas/mathematics/college/y6hbsfiui8bc542u9dpfud84fzaq02917r.png)
![d=a_2-a_1=4-1=3](https://img.qammunity.org/2020/formulas/mathematics/college/60gcgrm1vz6t7pgc6ygiyly2ndfz16xybt.png)
![d=a_3-a_2=7-4=3](https://img.qammunity.org/2020/formulas/mathematics/college/8jaiexpnjacrat169r4lk3v4gxc1rva7uv.png)
![d=a_4-a_3=10-7=3](https://img.qammunity.org/2020/formulas/mathematics/college/62jtuia31iv996w7qzexcx5bcq3o42i4ml.png)
![r_1=(a_2)/(a_1)=(4)/(1)=4](https://img.qammunity.org/2020/formulas/mathematics/college/23etj2j6b4inqnfuv7iudy551tkk6tpnbu.png)
![r_2=(a_3)/(a_2)=(7)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/svfh9pf67wn16kqy7v55ptmr5g5jvyzvlx.png)
![r_1\\eq r_2](https://img.qammunity.org/2020/formulas/mathematics/college/83dyy8bk51es4383hf59t8yzhq2l2ikabv.png)
Therefore, given sequence is an arithmetic sequence because the difference between consecutive terms is constant.
Substitute n=30 , d=3 a=1 in the given formula of arithmetic sequence
Then, we get
![a_(30)=1+(30-1)(3)=1+29(3)=1+87=88](https://img.qammunity.org/2020/formulas/mathematics/college/7ed0pw792fc1sfkwbk8xxutnnsusq94dwb.png)
Hence, the 30th term of sequence is 88.