99.4k views
0 votes
Find the solution to the differential equation

dB/dt+4B=20

with B(1)=30

1 Answer

1 vote

Answer:

Solution:
B=5+25e^(4-4t)

Explanation:

Given:
(dB)/(dt)+4B=20

with B(1)=30

The differential equation in form of linear differential equation,


(dy)/(dt)+Py=Q

Integral factor, IF:
e^(\int Pdt)

General Solution:


y\cdot IF=\int Q\cdot IFdt


(dB)/(dt)+4B=20

P=4, Q=20

IF=
e^(\int 4dt)=e^(4t)

Solution:


Be^(4t)=\int 20e^(4t)dt


Be^(4t)=5e^(4t)+C


B=5+Ce^(-4t)

B(1)=30 , Put t=1, B=30


30=5+Ce^(-4)


C=25e^4


B=5+25e^(4-4t)

User Guilgamos
by
5.6k points