Answer:
43.3 m
Step-by-step explanation:
d1 = 25.1 m in 15.4° west of north
d2 = 38.8 m in 23.1° south of west
Write the displacements in vector form
![\overrightarrow{d_(1)}=25.1\left ( -Sin15.4\widehat{i}+Cos15.4\widehat{j} \right )=-6.67\widehat{i}+24.2\widehat{j}](https://img.qammunity.org/2020/formulas/physics/college/497skoxbfrng7e9uvs3bv0f2o8k38vt66w.png)
![\overrightarrow{d_(2)}=38.8\left ( -Cos23.1\widehat{i}-Sin23.1\widehat{j} \right )=-35.69\widehat{i}-15.22\widehat{j}](https://img.qammunity.org/2020/formulas/physics/college/53zl9rvq6aa2pe73olag46nf6hduzrfqvx.png)
The resultant displacement is given by
![\overrightarrow{d}=\overrightarrow{d_(1)}+\overrightarrow{d_(2)}](https://img.qammunity.org/2020/formulas/physics/college/xynz3hqst5rbxlta5tlu3bbzs21qtnbwmj.png)
![\overrightarrow{d}}=\left ( -6.67-35.69 \right )\widehat{i}+\left ( 24.2-15.22 \right )\widehat{j}](https://img.qammunity.org/2020/formulas/physics/college/ipttn3tzk1pgyh8mqp0il1123680w54mfv.png)
![\overrightarrow{d}}=\left ( -42.36 \right )\widehat{i}+\left ( 8.98 \right )\widehat{j}](https://img.qammunity.org/2020/formulas/physics/college/iq8erxytaa1tbkhp0ui4yd91qvmbbxcw9e.png)
The magnitude of the resultant displacement is given by
![d=\sqrt{8.98^(2)+\left ( -42.36 \right )^(2)}=43.3 m](https://img.qammunity.org/2020/formulas/physics/college/m2k7ksllil6v43obkszi91lixs6jddo70d.png)
Thus, you are 43.3 m far from your starting point.