Answer:
a) 4.325*10^10 V/m
b) 1.689*10^10 V/m
c) 0
d) 6.384 C/m^3
Step-by-step explanation:
Hello!
The electric field of a sphere of uniform charge is a piecewise function, let a be the raius of the sphere
For r<a:
![E = kQ(r)/(a^(3))](https://img.qammunity.org/2020/formulas/physics/college/rh7jizt1cdagn7m0x9diq8xt9buhcsx8np.png)
For r>a:
![E=kQ/r^(2)](https://img.qammunity.org/2020/formulas/physics/college/n2o2m277dleblwue3r0kugu7ox4xp64mx6.png)
Since a=0.26m and k= 8.987×10⁹ N·m²/C²
a)
![E= 8.987*10^(9)(0.47C *0.18m)/((0.26m)^(3))](https://img.qammunity.org/2020/formulas/physics/college/fsrwgwvevw1abuw5m3q25lc7xvwq1qtu25.png)
E=4.325*10^10 V/m
b)
![E= 8.987*10^(9)(0.47C)/((0.5m)^(2))](https://img.qammunity.org/2020/formulas/physics/college/6yeephizcpscq0b9jyjgo0e2rxqfvxtl96.png)
E=1.689*10^10 V/m
c)
Since r --> ∞ 1/r^2 --> 0
E(∞)=0
d)
The charge density may be obtained dividing the charge by the volume of the sphere:
![\rho = (Q)/(V) =(0.47C)/((4)/(3) \pi (0.26m)^(3))=6.384 C/m^(3)](https://img.qammunity.org/2020/formulas/physics/college/344tdr3czjdl2an8b4sjmzisz6g19lw1ks.png)