Answer:
0.76 rad/s^2
Step-by-step explanation:
First, we convert the original and final velocity from rev/s to rad/s:
![v_o = 3.3(rev)/(s) * (2\pi rad)/(1rev) =20.73 rad/s](https://img.qammunity.org/2020/formulas/physics/college/xzr2isim5ciusj0onuc98nr0xpvds9yoon.png)
![v_f = 6.4(rev)/(s) * (2\pi rad)/(1rev)=40.21 rad/s](https://img.qammunity.org/2020/formulas/physics/college/r1sk340tybutcm7yp67blkivxgxr6ei086.png)
Now, we need to find the number of rads that the tire rotates in the 250m path. We use the arc length formula:
![D = x*r \\x = (D)/(r) = (250m)/(0.64m/2) = 781.25 rads](https://img.qammunity.org/2020/formulas/physics/college/fzc98th8l1pm5l27hejqywbwqr9oi86i8y.png)
Now, we just use the formula:
![w_f^2-w_o^2=2\alpha*x](https://img.qammunity.org/2020/formulas/physics/college/29fkkxo3fy807ie0xg7x7z2ir1kmsxhvrt.png)
![\alpha =(w_f^2-w_o^2)/(2x) = ((40.21rad/s)^2-(20.73rad/s)^2)/(2*781.25rad) = 0.76 rad/s^2](https://img.qammunity.org/2020/formulas/physics/college/nmd7pz1uwb62qx3t9e79qamwaheu2sv3xv.png)