Answer:
The horizontal distance is 478.38 m
Solution:
As per the question:
Initial Speed of the bullet in horizontal direction,
![v_(x) = 670 m/s](https://img.qammunity.org/2020/formulas/physics/college/frlk5kvvzsyck1c6weh60zmk9coxkcvtqp.png)
Initial vertical velocity of the bullet,
![v_(y) = 0 m/s](https://img.qammunity.org/2020/formulas/physics/college/98ilvve4rzaxwl03kdokpxzrr7kbj0u598.png)
Vertical distance, y = 0.025 m
Now, for the horizontal distance, 'x':
We first calculate time, t:
![y = v_(y)t - (1)/(2)gt^(2)](https://img.qammunity.org/2020/formulas/physics/college/joy9h3obkyalwerhpygudlcfttjjn6pbja.png)
(since, motion is vertically downwards under the action of 'g')
![0.025 = 0 - (1)/(2)* 9.8t^(2)](https://img.qammunity.org/2020/formulas/physics/college/pmyaw137yeas5d776eha7806u2qt12dfm6.png)
![t = √(0.05){9.8} = 0.0714 s](https://img.qammunity.org/2020/formulas/physics/college/tl8xfmr6ocrngsv8pol7rpr9iwklcoyfe9.png)
Now, the horizontal distance, x:
![x = v_(x)t + (1)/(2)a_(x)t^(2)](https://img.qammunity.org/2020/formulas/physics/college/14biyz63ymdvpcquma8xyf542vb82g5pgt.png)
![x = v_(x)t + (1)/(2)0.t^(2)](https://img.qammunity.org/2020/formulas/physics/college/e481fq59a8jbf0xmlcixhu5goswrvx9jcp.png)
(since, the horizontal acceleration will always be 0)
![x = 670* 0.714 = 478.38 m](https://img.qammunity.org/2020/formulas/physics/college/h941v932931qsiumy1afpmaqm9o3owwqan.png)