223k views
0 votes
Solve each of the following systems by Gauss-Jordan elimination. (b) X1-2x2+ x3- 4x4=1 X1+3x2 + 7x3 + 2x4=2 -12x2-11x3- 16x4 5 (a) 5x1+2x2 +6x3= 0 -2x1 +x2+3x3 = 0

1 Answer

4 votes

Answer:

a) The set of solutions is
\{(0,-3x_3,x_3): x_3\; \text{es un real}\} y b) the set of solutions is
\{(-6,(-41)/(17)-(30)/(17)x_4 , (37)/(17)+(8)/(17) x_4 ,x_4): x_4\;\text{es un real}\}.

Explanation:

a) Let's first find the echelon form of the matrix
\left[\begin{array}{ccc}5&2&6\\-2&1&3\end{array}\right].

  • We add
    (2)/(5) from row 1 to row 2 and we obtain the matrix
    \left[\begin{array}{ccc}5&2&6\\0&(9)/(5) &(27)/(5)\end{array}\right]
  • From the previous matrix, we multiply row 1 by
    (1)/(5) and the row 2 by
    (5)/(9) and we obtain the matrix
    \left[\begin{array}{ccc}1&(2)/(5) &(6)/(5) \\0&1&3\end{array}\right]. This matrix is the echelon form of the initial matrix.

The system has a free variable (x3).

  • x2+3x3=0, then x2=-3x3
  • 0=x1+
    (2)/(5)x2+
    (6)/(5)x3=

x1+
(2)/(5)(-3x3)+
(6)/(5)x3=

x1-
(6)/(5)x3+
(6)/(5)x3

then x1=0.

The system has infinite solutions of the form (x1,x2,x3)=(0,-3x3,x3), where x3 is a real number.

b) Let's first find the echelon form of the aumented matrix
\left[\begin{array}{ccccc}1&-2&1&-4&1\\1&3&7&2&2\\0&-12&-11&-16&5\end{array}\right].

  • To row 2 we subtract row 1 and we obtain the matrix
    \left[\begin{array}{ccccc}1&-2&1&-4&1\\0&5&6&6&1\\0&-12&-11&-16&5\end{array}\right]
  • From the previous matrix, we add to row 3,
    (12)/(5) of row 2 and we obtain the matrix
    \left[\begin{array}{ccccc}1&-2&1&-4&1\\0&5&6&6&1\\0&0&(17)/(5)&(-8)/(5)&(37)/(5)   \end{array}\right].
  • From the previous matrix, we multiply row 2 by
    (1)/(5) and the row 3 by
    (5)/(17) and we obtain the matrix
    \left[\begin{array}{ccccc}1&-2&1&-4&1\\0&1&(6)/(5) &(6)/(5)&(1)/(5)\\0&0&1&(-8)/(17)&(37)/(17) \end{array}\right]. This matrix is the echelon form of the initial matrix.

The system has a free variable (x4).

  • x3-
    (8)/(17)x4=
    (37)/(17), then x3=
    (37)/(17)+
    (8)/(17)x4.</li></ul><ul><li>x2+[tex](6)/(5)x3+
    (6)/(5)x4=
    (1)/(5), x2+
    (6)/(5)(
    (37)/(17)+
    (8)/(17)x4)+[tex](6)/(5)x4=
    (1)/(5), then

x2=
(-41)/(17)-(30)/(17)x4.

  • x1-2x2+x3-4x4=1, x1+
    (82)/(17)+
    (60)/(17)x4+
    (37)/(17)+
    (8)/(17)x4-4x4=1, then x1=
    1-(119)/(17)=-6

The system has infinite solutions of the form (x1,x2,x3,x4)=(-6,
(-41)/(17)-(30)/(17)x4,
(37)/(17)+
(8)/(17)x4,x4), where x4 is a real number.

User Mario Niepel
by
8.5k points