Answer:
You can use the given hint as follows:
Explanation:
Let
be a square matrix that is a skew-symmetric matrix. Since the matrix
is matrix of size
then it can be identified with an scalar. It is clear that
. Then applying the properties of transposition we have
![({\bf x}^(T)A{\bf x})^(T)=({\bf x}^(T))A^(T)({\bf x}^(T))^(T)={\bf x}^(T)(-A){\bf x}=-{\bf x}^(T)A{\bf x}](https://img.qammunity.org/2020/formulas/mathematics/college/vdudqgbw4rq7w5offlj7wgrbk5xglnscx2.png)
Then,
![{\bf x}^(T)A{\bf x}+{\bf x}^(T)A{\bf x}=0](https://img.qammunity.org/2020/formulas/mathematics/college/lfkyg08ekjcvotxzzv678ri0x1mf1sjvzx.png)
![2{\bf x}^(T)A{\bf x}=0](https://img.qammunity.org/2020/formulas/mathematics/college/2xksfpoq3duy0ljt0z543f8qfcrvhz9e1l.png)
Then,
![{\bf x}^(T)A{\bf x}=0](https://img.qammunity.org/2020/formulas/mathematics/college/j9e0o6w95tbal4iswftoa96h7qakaxpzqm.png)
For all column vector
of size
.