133k views
1 vote
Let a,b,,c and x elements in the group G. In each of the following solve for x in terms of a,b,c, and c.

Solve simultaneously x^2 a=bxc^-1 and acx=xac.

1 Answer

3 votes

Answer with Step-by-step explanation:

We are given that a, b, c and x are elements in the group G.

We have to find the value of x in terms of a, b and c.

a.
x^2a=bxc^(-1)


x^2ac=bxc^(-1)c=bx


x^(-1)x^2ac=x^(-1)bx=b (
x^(-1)bx=b)


xac=b


xacc^(-1)=bc^(-1)


xa=bc^(-1) (
cc^(-1)=)


xaa^(-1)=bc^(-1)a^(-1)


x=bc^(-1)a^(-1)

b.
acx=xac


acxc^(-1)=xacc^(-1)=xa (
cc^(-1)=1,cxc^(-1)=x)


axa^(-1)=xaa^(-1) (
aa^(-1)=1,axa^(-1)=x)


x=x

Identity equation

Hence, given equation has infinite solution and satisfied for all values of a and c.

User Stace
by
5.4k points