Answer:
Explanation:
Given that *is the binary operation in the sets of integers.
![a*b = a - b + ab](https://img.qammunity.org/2020/formulas/mathematics/college/vwe0g3zyyfbkqhimkbqsud5g0e9stsrhn2.png)
closure: a-b+ab is again an integer belongs to Z. Hence closure is true.
Associativity:
![a*(b*c) = a*(b+c-bc)\\= a-b-c+bc+ab+ac-abc\\= a-b-c +ab+bc+ca-abc](https://img.qammunity.org/2020/formulas/mathematics/college/mv2reby1xzk1iurlwinu9rkxa23n31nveq.png)
![(a*b)*c=(a+b-ab)*c\\=a+b-ab-c+ac+bc-abc\\](https://img.qammunity.org/2020/formulas/mathematics/college/qf1sr1gsbrhp4xcir6jf63496jvbrjs6g0.png)
The two are not equal. Hence this cannot be a group as associtiavity does not hold good.