Answer with Step-by-step explanation:
We are given that two matrices A and B are square matrices of the same size.
We have to prove that
Tr(C(A+B)=C(Tr(A)+Tr(B))
Where C is constant
We know that tr A=Sum of diagonal elements of A
Therefore,
Tr(A)=Sum of diagonal elements of A
Tr(B)=Sum of diagonal elements of B
C(Tr(A))=
Sum of diagonal elements of A
C(Tr(B))=
Sum of diagonal elements of B
![C(A+B)=C\cdot (A+B)](https://img.qammunity.org/2020/formulas/mathematics/college/hlbfwp4zjqls4fjb4l90j5c3tuitomsyne.png)
Tr(C(A+B)=Sum of diagonal elements of (C(A+B))
Suppose ,A=
![\left[\begin{array}{ccc}1&0\\1&1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/7s1rwagrzgucn3kdclyczz24r745pppm8v.png)
B=
![\left[\begin{array}{ccc}1&1\\1&1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/3p3165y753a8dtmtcmnafpq1unynm0b5yu.png)
Tr(A)=1+1=2
Tr(B)=1+1=2
C(Tr(A)+Tr(B))=C(2+2)=4C
A+B=
![\left[\begin{array}{ccc}1&0\\1&1\end{array}\right]+\left[\begin{array}{ccc}1&1\\1&1\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/x9ub2wpugcfsjduzi3xu66tw55snuilgze.png)
A+B=
![\left[\begin{array}{ccc}2&1\\2&2\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/qnkq5fsy3isbshqnffijl7c01bhq6xmd17.png)
C(A+B)=
![\left[\begin{array}{ccc}2C&C\\2C&2C\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/pyh4ig4dgfp9mut660g9e8l4742jhenqjz.png)
Tr(C(A+B))=2C+2C=4C
Hence, Tr(C(A+B)=C(Tr(A)+Tr(B))
Hence, proved.