Answer:
![X=X_o+(1)/(2)gt^2](https://img.qammunity.org/2020/formulas/physics/college/otcg3sll5ggrihuf3dp2tvyebhf808w8ox.png)
Step-by-step explanation:
Given that
Length = L
At initial over hanging length = Xo
Lets take the length =X after time t
The velocity of length will become V
Now by energy conservation
![(1)/(2)mV^2=mg(X-X_o)](https://img.qammunity.org/2020/formulas/physics/college/v4jts8aiggteg6v2arrcrm6cqyslha9e6n.png)
So
![V=√(2g(X-X_o))](https://img.qammunity.org/2020/formulas/physics/college/6or48tfod533jm1xf6m5wecc9srjos8k62.png)
We know that
![(dX)/(dt)=V](https://img.qammunity.org/2020/formulas/physics/college/cet38ggn7lka9hx2m1gq6pjl845f0t67an.png)
![(dX)/(dt)=√(2g(X-X_o))](https://img.qammunity.org/2020/formulas/physics/college/c98ya4o565j3zbptwsojqwo3ekr9dy8xbq.png)
![√(2g)\ dt=(X-X_o)^{-(1)/(2)}dX](https://img.qammunity.org/2020/formulas/physics/college/ki5oxybzl3tvnkla5mupdh7860ismog72q.png)
At t= 0 ,X=Xo
So we can say that
![X=X_o+(1)/(2)gt^2](https://img.qammunity.org/2020/formulas/physics/college/otcg3sll5ggrihuf3dp2tvyebhf808w8ox.png)
So the length of cable after time t
![X=X_o+(1)/(2)gt^2](https://img.qammunity.org/2020/formulas/physics/college/otcg3sll5ggrihuf3dp2tvyebhf808w8ox.png)