Answer:
![y(t)\ =\ C_1e^(-2t)+C_2e^t-t(e^(-2t))/(3)-(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/f2isz2i70sk6s30ta2d48z89oni6v0j1ot.png)
Explanation:
As given in question, we have to find the solution of differential equation
![y](https://img.qammunity.org/2020/formulas/mathematics/college/v5fge2syo92hrzvojgq1vembt84aaznky8.png)
by using the variation in parameter method.
From the above equation, the characteristics equation can be given by
![D^2+D-2\ =\ 0](https://img.qammunity.org/2020/formulas/mathematics/college/scf08gp1d0qgasnaw3dxipkztpgfgo7dtf.png)
![=>D=\ (-1+√(1^2+4* 2* 1))/(2* 1)\ or\ (-1-√(1^2+4* 2* 1))/(2* 1)](https://img.qammunity.org/2020/formulas/mathematics/college/wbfsjutfwi7budtwm5lk338038p7xckvuy.png)
![=>\ D=\ -2\ or\ 1](https://img.qammunity.org/2020/formulas/mathematics/college/fkgz6w13mt9wzh7l2t4y7h9ujmgac5t36f.png)
Since, the roots of characteristics equation are real and distinct, so the complementary function of the differential equation can be by
![y_c(t)\ =\ C_1e^(-2t)+C_2e^t](https://img.qammunity.org/2020/formulas/mathematics/college/5o1d4safqk39733dq6hr0nn8yvry4tk4n4.png)
Let's assume that
![y_2(t)=e^t](https://img.qammunity.org/2020/formulas/mathematics/college/kvi9g750i6tmbzn4n6r8tp33qkg0cqlfl3.png)
![y'_2(t)=e^t](https://img.qammunity.org/2020/formulas/mathematics/college/gludumuhjclx9vmyk3fyj08hvhzwt3xa7p.png)
and g(t)=1
Now, the Wronskian can be given by
![W=y_1(t).y'_2(t)-y'_1(t).y_2(t)](https://img.qammunity.org/2020/formulas/mathematics/college/aq0tjlq0q6jsun09xrfx935wjtgwg9gfeb.png)
![=e^(-2t).e^t-e^t(-e^(-2t))](https://img.qammunity.org/2020/formulas/mathematics/college/oxgcg0h4a63jhd4ok65jt81zo880jlqqr4.png)
![=e^(-t)+2e^(-t)](https://img.qammunity.org/2020/formulas/mathematics/college/u9jivyr4ktpbdrojy7oa3oj9y6gj61sr6u.png)
![=3e^(-t)](https://img.qammunity.org/2020/formulas/mathematics/college/a3qpck6a5cgf6stcyy740xy79ypfqhou0y.png)
Now, the particular solution can be given by
![y_p(t)\ =\ -y_1(t)\int{(y_2(t).g(t))/(W)dt}+y_2(t)\int{(y_1(t).g(t))/(W)dt}](https://img.qammunity.org/2020/formulas/mathematics/college/o7l530y5cfyuuh71k99219o4rn54rxj923.png)
![=\ -e^(-2t)\int{(e^t.1)/(3.e^(-t))dt}+e^(t)\int{(e^(-2t).1)/(3.e^(-t))dt}](https://img.qammunity.org/2020/formulas/mathematics/college/616p0v0stw55d59wxxhuljyn0ktxisyvxa.png)
![=\ -e^(-2t)\int{(1)/(3)dt}+(e^t)/(3)\int{e^(-t)dt}](https://img.qammunity.org/2020/formulas/mathematics/college/p6y8pwy0uuv1ws1n72lf5py50pzkbutmnn.png)
![=(-e^(-2t))/(3).t-(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/w8ghdi6cea5c03gf9bggq6i07er8xe0wve.png)
![=-t(e^(-2t))/(3)-(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/ijle9c6k7vln79w8dvrazlm5qviqg5fr8i.png)
Now, the complete solution of the given differential equation can be given by
![y(t)\ =\ y_c(t)+y_p(t)](https://img.qammunity.org/2020/formulas/mathematics/college/uw9qmb5j3kpazjj8sc5vdgeozem84q4226.png)
![=C_1e^(-2t)+C_2e^t-t(e^(-2t))/(3)-(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/ecq3sawszvmav30cf0q6p0txnha816mkz9.png)