Answer:
47.8
Explanation:
Given the data:
29; 31; 34; 40; 58; 67; 68; 69; 76; 80; 82; 95; 96; 96; 99; 106; 112; 127; 145; 150
Mean (m) = ΣX / n
n = sample size
ΣX = 1660
Mean = 1660 / 20
Mean (m) = 83
Standard deviation(s) : √(Σ(X - m)² / n-1)
Σ(X - m)² = (29-83)^2 + (31-83)^2 + (34-83)^2 + (40-83)^2 + (58-83)^2 + (67-83)^2 + (68-83)^2 + (69-83)^2 + (76-83)^2 + (80-83)^2 + (82-83)^2 + (95-83)^2 + (96-83)^2 + (96-83)^2 + (99-83)^2 + (106-83)^2 + (112-83)^2 + (127-83)^2 + (145-83)^2 + (150-83)^2
√(23608 / (20-1))
√23608/ 19
√1242.5263
= 35.249486
= 35.25
Mean -1(s)
83 -35.25
47.75
=47.8