211k views
5 votes
If the demand function for a commodity is given by the equation

p^2 + 16q = 1400

and the supply function is given by the equation

700 − p^2 + 10q = 0,

find the equilibrium quantity and equilibrium price. (Round your answers to two decimal places.)

equilibrium quantity
equilibrium price $

User Eironeia
by
5.6k points

1 Answer

4 votes

Answer:

Equilibrium quantity = 26.92

Equilibrium price is $31.13

Explanation:

Given :Demand function :
p^2 + 16q = 1400

Supply function :
700 -p^2 + 10q = 0

To Find : find the equilibrium quantity and equilibrium price.

Solution:

Demand function :
p^2 + 16q = 1400 --A

Supply function :
p^2-10q=700 ---B

Now to find the equilibrium quantity and equilibrium price.

Solve A and B

Subtract B from A


p^2-10q -p^2-16q=700-1400


-26q=-700


26q=700


q=(700)/(26)


q=26.92

So, equilibrium quantity = 26.92

Substitute the value of q in A


p^2 + 16(26.92) = 1400


p^2 + 430.72 = 1400


p^2 = 1400- 430.72


p^2 = 969.28


p = √(969.28)


p = 31.13

So, equilibrium price is $31.13

User Alivingston
by
4.6k points