215k views
5 votes
Convert the following systems of equations to an augmented matrix and use Gauss-Jordan reduction to convert to an equilivalent matrix in reduced row echelon form. (Show the steps in the process of converting to G-J). You don't have to find the solution set X12x223 = 6 2a1 3 = 6 X1x23x3 = 6

User Hugh Hou
by
8.7k points

1 Answer

4 votes

Answer:

System of equations:


x_1+2x_2+2x_3=6\\2x_1+x_2+x_3=6\\x_1+x_2+3x_3=6

Augmented matrix:


\left[\begin{array}{cccc}1&2&2&6\\2&1&1&6\\1&1&3&6\end{array}\right]

Reduced Row Echelon matrix:


\left[\begin{array}{cccc}1&2&2&6\\0&1&1&2\\0&0&1&1\end{array}\right]

Explanation:

Convert the system into an augmented matrix:


\left[\begin{array}{cccc}1&2&2&6\\2&1&1&6\\1&1&3&6\end{array}\right]

For notation, R_n is the new nth row and r_n the unchanged one.

1. Operations:


R_2=-2r_1+r_2\\R_3=-r_1+r_3

Resulting matrix:


\left[\begin{array}{cccc}1&2&2&6\\0&-3&-3&-6\\0&-1&1&0\end{array}\right]

2. Operations:


R_2=-(1)/(3)r_2

Resulting matrix:


\left[\begin{array}{cccc}1&2&2&6\\0&1&1&2\\0&-1&1&0\end{array}\right]

3. Operations:


R_3=r_2+r_3

Resulting matrix:


\left[\begin{array}{cccc}1&2&2&6\\0&1&1&2\\0&0&2&2\end{array}\right]

4. Operations:


R_3=(1)/(2)r_3

Resulting matrix:


\left[\begin{array}{cccc}1&2&2&6\\0&1&1&2\\0&0&1&1\end{array}\right]

User Stojke
by
8.4k points