83.3k views
5 votes
You have a rod with a length of 146.4 cm. You prop up one end on a brick which is 3.8 cm thick. Your uncertainty in measuring these distances is ±0.05 cm. What is the angle that the rod makes with the table?

_______ degrees
What is the uncertainty in that angle?
________ degrees

User Yydl
by
6.2k points

1 Answer

4 votes

Answer:


\partial \theta = 0.003

Step-by-step explanation:

we know that


sin\theta = (3.8)/(146.4)


\theta = sin^(-1) (3.8)/(146.4)


\theta = 1.484°


\theta = 1.484° *(\pi)/(180) = 0.0259 radians

as we see that
sin\theta = \theta

relative error
(\partial \theta)/(\theta) = (\partial X)/(X_1) +(\partial X)/(X_2)

Where X_1 IS HEIGHT OF ROCK


X_2 IS THE HEIGHT OF ROAD


\partial X = uncertainity in measuring distance


\partial X = 0.05

Putting all value to get uncertainity in angle


(\partial \theta)/(0.0259) = (0.05)/(3.8) +(0.05)/(146.4)

solving for
\partial \theta we get


\partial \theta = 0.003

User Dakdad
by
5.7k points