226k views
1 vote
Find the average rate of change of the function below from x1 to x2.

f(x)=2x+7

from

x1=−1

to

x2=0

Question 9 options:

a)

2

b)

−12

c)

13

d)

-8

e)

none

User Alex Shyba
by
7.1k points

2 Answers

1 vote

Answer:

wala akong alam jun

Explanation:

i hate math, mathuloggggggg ka, ayieee ?luh asa ka

User Slim Fadi
by
6.7k points
5 votes

Answer:

The average rate of change is 2, letter a)

Explanation:

Given a function y, the average rate of change S of y=f(x) in an interval
[x_(s), x_(f)] will be given by the following equation:


S = (f(x_(f)) - f(x_s))/(x_(f) - x_(s)).

In our problem, we have that:


f(x) = 2x + 7


x_(s) = -1


x_(f) = 0

So:


f(x_(s)) = f(-1) = 2(-1) + 7 = -2 + 7 = 5


f(x_(f)) = f(0) = 2(0) + 7 = 0 + 7 = 7

The average rate of change is:


S = (f(x_(f)) - f(x_s))/(x_(f) - x_(s)) = (7-5)/(0 -(-1)) = (2)/(1) = 1

The average rate of change is 2, letter a)

User Vishal Ranapariya
by
7.9k points