78.4k views
1 vote
Find the inverse of 12 modulo 19

1 Answer

1 vote

Answer:

8 is the modular inverse of 12 mod 19 since 12*8 mod 19 ≡ 1.

Explanation:

We need to find the inverse of 12 modulo 19.


12^(-1)(\text{ mod 19})

If a is an integer and m is modulo, then the modular multiplicative inverse of a modulo m is an integer b such that


a* b\equiv 1(\text{ mod m})

Substitute different values of b and check whether that remainder is 1 after modulo 19.

At b=1,


12* 1\equiv 12(\text{ mod 19})

At b=2,


12* 2\equiv 5(\text{ mod 19})

At b=3,


12* 3\equiv 17(\text{ mod 19})

At b=4,


12* 4\equiv 10(\text{ mod 19})

At b=5,


12* 5\equiv 3(\text{ mod 19})

At b=6,


12* 6\equiv 15(\text{ mod 19})

At b=7,


12* 7\equiv 8(\text{ mod 19})

At b=8,


12* 8\equiv 1(\text{ mod 19})

Therefore, 8 is the modular inverse of 12 mod 19 since 12*8 mod 19 ≡ 1.

User Heythatsmekri
by
8.6k points