Answer:
The wavelength of the wave is 20 m.
Step-by-step explanation:
Given that,
Amplitude = 10 cm
Radial frequency
![\omega = 20\pi\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/xg0vu1c7xvd6vvfhmw18ysria143jgwj8h.png)
Bulk modulus = 40 MPa
Density = 1000 kg/m³
We need to calculate the velocity of the wave in the medium
Using formula of velocity
![v=\sqrt{(k)/(\rho)}](https://img.qammunity.org/2020/formulas/physics/college/b8zds6y228tfiknp54cm3cvph5kfuugfp8.png)
Put the value into the formula
![v=\sqrt{(40*10^(6))/(10^3)}](https://img.qammunity.org/2020/formulas/physics/college/7u114b1sevkzr1kgflf3xh5ywy3cl7wt4p.png)
![v=200\ m/s](https://img.qammunity.org/2020/formulas/physics/college/7x69ykti6k3wild2219t2b53svhf05xp41.png)
We need to calculate the wavelength
Using formula of wavelength
![\lambda =(v)/(f)](https://img.qammunity.org/2020/formulas/physics/college/gnuveoslo8zw2qoh5dnkxwfkzoycp6z9rm.png)
![\lambda=(v*2\pi)/(\omega)](https://img.qammunity.org/2020/formulas/physics/college/zmtq7nmhsx1xpo05opbke2s5zu4usf8j4d.png)
Put the value into the formula
![\lambda=(200*2\pi)/(20\pi)](https://img.qammunity.org/2020/formulas/physics/college/t31tw4mbkg2mvc7fd780pr65i4ydhz2fh2.png)
![\lambda=20\ m](https://img.qammunity.org/2020/formulas/physics/college/4gh8yxro90ijj1ivhkcc5t2rlppu6kx2de.png)
Hence, The wavelength of the wave is 20 m.