203k views
4 votes
Find the solution of cos(t) * f ` (t) = sin(t)

1 Answer

7 votes

Answer:

The solution is
f(t)=-\ln \left|\cos \left(t\right)\right|+C

Explanation:

We know that this ordinary differential equation (ODE) is separable if we can write F(x,y) = f(x)g(y) for some function f(x), g(x).

We can write this ODE in this way


cos(t) \cdot f'(t)=sin(t)\\f'(t)=(sin(t))/(cos(t))


\mathrm{If\quad }f^(') \left(x\right)=g\left(x\right)\mathrm{\quad then\quad }f\left(x\right)=\int g\left(x\right)dx


f(t) =\int\limits{(sin(t))/(cos(t))} \, dt

To solve this integral we need to follow this steps


\int (\sin \left(t\right))/(\cos \left(t\right))dt = \\\mathrm{Apply\:u-substitution:}\:u=\cos \left(t\right)\\\int (\sin \left(t\right))/(u)dt \\\mathrm{And \:du=-sin(t)\cdot dt}\\\mathrm{so \>dt=(du)/(-sin(t))}\\\int (\sin \left(t\right))/(u)dt = -\int (1)/(u)du


\mathrm{Use\:the\:common\:integral}:\quad \int (1)/(u)du=\ln \left(\left|u\right|\right)\\-ln|u|\\\mathrm{Substitute\:back}\:u=\cos \left(t\right)\\-\ln \left|\cos \left(t\right)\right|\\

Add the constant of integration


f(t)=-\ln \left|\cos \left(t\right)\right|+C

User James Murty
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories