Answer:
Te correct answer is c) 0.750
Explanation:
Lets call:
A = {Allan wins the election}
B = {Barnes wins the election}
MA = {the model predicts that Allan wins}
MB = {the model predicts Barnes wins}
We know that the model has a 50:50 chance of correctly predicting the election winner when there are two candidates. Then:
P(MA | A) = 0.5 = P(MA | B)
P(MB | B) = 0.5 = P(MB | A)
The prior probability P(A) given by the election researcher is 0.75
We must find the posterior probability P(A | MB)
We use Bayes theorem:

We used the result:
