Answer : The change in entropy is 6 J/K
Explanation :
To calculate the change in entropy we use the formula:
![\Delta S=\int (dQ)/(T)](https://img.qammunity.org/2020/formulas/chemistry/college/k155bq5ivbhzv6sadu57h2hvh6d4p7bn32.png)
and,
![Q=nC_pdT](https://img.qammunity.org/2020/formulas/chemistry/college/m048ofjc40s7aqbelvhkbhvjgq5glud0l3.png)
![\Delta S=n\int\limits^(T_f)_(T_i){(C_(p)dT)/(T)](https://img.qammunity.org/2020/formulas/chemistry/college/zcuix6euhtz0brw0d1hsd0zgqvuyqwfq0b.png)
where,
= change in entropy
n = number of moles = 2 moles
= final temperature = 303 K
= initial temperature = 273 K
= heat capacity at constant pressure =
![0.1* T(J/K.mol)](https://img.qammunity.org/2020/formulas/chemistry/college/xdp0g5jb3uoqura1lu6sz06sj66ri068bl.png)
Now put all the given values in the above formula, we get:
![\Delta S=2\int\limits^(303)_(273){((0.1* TdT)/(T)](https://img.qammunity.org/2020/formulas/chemistry/college/cendnjoi3uwekkjbkqm3032m2w2t6fkd5u.png)
![\Delta S=2* 0.1\int\limits^(303)_(273)dT](https://img.qammunity.org/2020/formulas/chemistry/college/synnxmyb8dtjkduau7khnuh6vx07jykdz6.png)
![\Delta S=2* 0.1* [T]^(303)_(273)](https://img.qammunity.org/2020/formulas/chemistry/college/614ce9nz9d7ega7chw1u4h7a45vegessuf.png)
![\Delta S=2* 0.1* (T_f-T_i)](https://img.qammunity.org/2020/formulas/chemistry/college/n52y5o0hmnvaqzal11644lkvzmm3ab59fr.png)
![\Delta S=2* 0.1* (303-273)](https://img.qammunity.org/2020/formulas/chemistry/college/9ylys7y7si627ct2kbun2z2b207pe6gd1y.png)
![\Delta S=6J/K](https://img.qammunity.org/2020/formulas/chemistry/college/xe6q1u2yj37cwytqmb8yy2viijxc2dvv8o.png)
Therefore, the change in entropy is 6 J/K