Answer with explanation:
Given : Sample size : n= 5
The proportion nonconforming : p= 0.10
Binomial probability formula :-
![P(x)=^nC_x p^(x)(1-p)^(n-x)](https://img.qammunity.org/2020/formulas/engineering/college/yjhah62159lbz46nw35rrv1zlh8tputsoh.png)
The probability of zero nonconforming unit in the sample :-
![P(0)=^5C_0 (0.10)^(0)(1-0.1)^(5)\\\\=(1)(0.9)^5\ \ [ \because\ ^nC_0=1]=0.59049](https://img.qammunity.org/2020/formulas/engineering/college/yg08vlv5rosiig5neirfecgby4ja51kdmz.png)
∴ The probability of zero nonconforming unit in the sample= 0.59049
The probability of one nonconforming unit in the sample :-
![P(1)=^5C_1 (0.10)^(1)(0.9)^(4)\\\\=(5)(0.1)(0.9)^5\ \ [ \because\ ^nC_1=n]=0.295245](https://img.qammunity.org/2020/formulas/engineering/college/b41i585bk6gb5b98h3bqwqu53qvaw129cb.png)
∴ The probability of one nonconforming unit in the sample=0.295245
The probability of 2 or more nonconforming units in the sample :-
![P(X\geq2)=1-(P(0)+P(1))=1-(0.59049+0.295245)\\\\=1-0.885735=0.114265](https://img.qammunity.org/2020/formulas/engineering/college/vafpr7ye405onaw2yn6m7l24reed786f2u.png)
∴ The probability of 2 or more nonconforming units in the sample=0.114265