Answer:
1) A=282.6 mm
2)
![a_(max)=60.35\ m/s^2](https://img.qammunity.org/2020/formulas/engineering/college/4lyurqqflnpkussjpftd12i183dpkxr6ni.png)
3)T=0.42 sec
4)f= 2.24 Hz
Step-by-step explanation:
Given that
V=3.5 m/s at x=150 mm ------------1
V=2.5 m/s at x=225 mm ------------2
Where x measured from mid position.
We know that velocity in simple harmonic given as
![V=\omega √(A^2-x^2)](https://img.qammunity.org/2020/formulas/engineering/college/u7w7bx1eblr6quz3ug9t5q8aj9p7ewajg2.png)
Where A is the amplitude and ω is the natural frequency of simple harmonic motion.
From equation 1 and 2
------3
--------4
Now by dividing equation 3 by 4
![(3.5)/(2.5)=\frac {√(A^2-0.15^2)}{√(A^2-0.225^2)}](https://img.qammunity.org/2020/formulas/engineering/college/19bzruix3jdbpys6xedkxc9rwhhnrcnja8.png)
![1.96=\frac {{A^2-0.15^2}}{{A^2-0.225^2}}](https://img.qammunity.org/2020/formulas/engineering/college/91ycvmqh7yqwo5esizmx1e28ei87jqqff3.png)
So A=0.2826 m
A=282.6 mm
Now by putting the values of A in the equation 3
![3.5=\omega √(A^2-0.15^2)](https://img.qammunity.org/2020/formulas/engineering/college/eevxnyazwe6x3i1xi49g70w2812zql4pnr.png)
![3.5=\omega √(0.2826^2-0.15^2)](https://img.qammunity.org/2020/formulas/engineering/college/w8ns55lc1vkbuqs8hu116ax5941qlu9p1r.png)
ω=14.609 rad/s
Frequency
ω= 2πf
14.609= 2 x π x f
f= 2.24 Hz
Maximum acceleration
![a_(max)=\omega ^2A](https://img.qammunity.org/2020/formulas/engineering/college/vlap0suh8qi6gjdfi3l5ifupy752qdwlk8.png)
![a_(max)=14.61 ^2* 0.2826\ m/s^2](https://img.qammunity.org/2020/formulas/engineering/college/flxyh1mphtcm2tfx1uc35ibly9ri5p9b0s.png)
![a_(max)=60.35\ m/s^2](https://img.qammunity.org/2020/formulas/engineering/college/4lyurqqflnpkussjpftd12i183dpkxr6ni.png)
Time period T
![T=(2\pi)/(\omega)](https://img.qammunity.org/2020/formulas/physics/college/xd7d41v21eandg8qgjr6lp5zykxnc425d1.png)
![T=(2\pi)/(14.609)](https://img.qammunity.org/2020/formulas/engineering/college/f4rb6nq26henftomwuc1luv8pxaylvu3a1.png)
T=0.42 sec