Answer : The de Broglie wavelength will be
![3.68* 10^(-33)m](https://img.qammunity.org/2020/formulas/chemistry/college/fheyyv3pvn7fuiubktjj0kcgbk61a6uc02.png)
Solution :
The formula used for de Broglie wavelength is:
..........(1)
where,
= wavelength = ?
h = Planck's constant =
![6.626* 10^(-34)Js](https://img.qammunity.org/2020/formulas/physics/college/b18kmhhpr3ehzalofa0yct1hdtfjbym27x.png)
m = mass = 1.2 g = 0.0012 kg
Conversion used : 1 kg = 1000 g
v = velocity = 150 m/s
Now put all the given values in equation 1, we get:
![\lambda=(6.626* 10^(-34)Js)/((0.0012kg)* (150m/s))](https://img.qammunity.org/2020/formulas/chemistry/college/sr4i439nw40daevgonn54ba9arqzr1a6r2.png)
![\lambda=3.68* 10^(-33)m](https://img.qammunity.org/2020/formulas/chemistry/college/ra15rytwr6hpxk0ljbzc32kzbwij9dvmlh.png)
Therefore, the de Broglie wavelength will be
![3.68* 10^(-33)m](https://img.qammunity.org/2020/formulas/chemistry/college/fheyyv3pvn7fuiubktjj0kcgbk61a6uc02.png)