Answer: 39.308 pounds
Explanation:
We assume that the given population is normally distributed.
Given : Significance level :
![\alpha: 1-0.98=0.02](https://img.qammunity.org/2020/formulas/mathematics/college/quiny776ita8llqu4i1z2al93evhrw49g9.png)
Sample size : n= 12, which is small sample (n<30), so we use t-test.
Critical value (by using the t-value table)=
![t_(n-1, \alpha/2)=t_(11,0.01)=2.718](https://img.qammunity.org/2020/formulas/mathematics/college/zqy885amw7s9xy7lucatosphss7yyhtaln.png)
Sample mean :
Standard deviation :
![\sigma= 20](https://img.qammunity.org/2020/formulas/mathematics/college/f6b800xncg5gttzqc4l6yvb862tkmurovf.png)
The lower bound of confidence interval is given by :-
![\overline{x}-t_((n-1,\alpha/2))(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/college/6mqwnx6bat5mwfe9bee7u1owgdh49kj2v2.png)
i.e.
![55-(2.718)(20)/(√(12))](https://img.qammunity.org/2020/formulas/mathematics/college/1hfrg6zwo35yeiwe3f8xr5a2m724omg4fe.png)
![=55-15.6923803166\approx55-15.692=39.308](https://img.qammunity.org/2020/formulas/mathematics/college/y9kjywevatxc8tul0trqmge9qdqt4u1swl.png)
Hence, the lower bound for the 98% confidence interval for the mean yearly sugar consumption= 39.308 pounds