Answer: The required inverse of the given matrix is
![P^(-1)=\left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right].](https://img.qammunity.org/2020/formulas/mathematics/college/u8pcloab7h3856may0x12jytcwbqpw54cy.png)
Step-by-step explanation: We are given to find the inverse of the following orthogonal matrix :
![P=\left[\begin{array}{ccc}a&d&g\\b&e&h\\c&f&i\end{array}\right] .](https://img.qammunity.org/2020/formulas/mathematics/college/loyd5oahd5w7zd3397n6y008aiimsyrkpg.png)
We know that
if M is an orthogonal matrix, then the inverse matrix of M is the transpose of M.
That is,

The transpose of the given matrix P is given by
![P^T=\left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right].](https://img.qammunity.org/2020/formulas/mathematics/college/hqgqbl357hf0mvqtnee45xufjpspog1gkx.png)
Therefore, according to the definition of an orthogonal matrix, the inverse of matrix P is given by
![P^(-1)=P^T=\left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right].](https://img.qammunity.org/2020/formulas/mathematics/college/wn4kegwsuamic6evdzb2dcfmdz39c3u8ks.png)
Thus, the required inverse of the given matrix is
![P^(-1)=\left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right].](https://img.qammunity.org/2020/formulas/mathematics/college/u8pcloab7h3856may0x12jytcwbqpw54cy.png)