Answer:
Ea = 177x10³ J/mol
ko =
J/mol
Step-by-step explanation:
The specific reaction rate can be calculated by Arrhenius equation:
![k = koxe^(-Ea/RT)](https://img.qammunity.org/2020/formulas/chemistry/college/iqxia0feapvf5fpy6rsrmhoxnu0jsxg85a.png)
Where k0 is a constant, Ea is the activation energy, R is the gas constant, and T the temperature in Kelvin.
k depends on the temperature, so, we can divide the k of two different temperatures:
![(k1)/(k2) = (koxe^(-Ea/RT1))/(koxe^(-Ea/RT2))](https://img.qammunity.org/2020/formulas/chemistry/college/6g8bvzu6zr1mer6lkum18wa77c0dlr8gsu.png)
![(k1)/(k2) = e^(-Ea/RT1 + Ea/RT2)](https://img.qammunity.org/2020/formulas/chemistry/college/9asfveq2amv1r2nmchccy5uie9ji1uqv8b.png)
Applying natural logathim in both sides of the equations:
ln(k1/k2) = Ea/RT2 - Ea/RT1
ln(k1/k2) = (Ea/R)x(1/T2 - 1/T1)
R = 8.314 J/mol.K
ln(2.46/47.5) = (Ea/8.314)x(1/528 - 1/492)
ln(0.052) = (Ea/8.314)x(-1.38x
![10^(-4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/51bogkepdlk9ouwkfioaqqlv6zwkvbw3lp.png)
-1.67x
xEa = -2.95
Ea = 177x10³ J/mol
To find ko, we just need to substitute Ea in one of the specific reaction rate equation:
![k1 = koxe^(-Ea/RT1)](https://img.qammunity.org/2020/formulas/chemistry/college/w3wrk0gti0dhfm64irlz9sqcwxvjyn4vsi.png)
![2.46 = koxe^(-177x10^3/8.314x492)](https://img.qammunity.org/2020/formulas/chemistry/college/w9sr64ietxl722rzv4lwy6d43t0s112jnz.png)
![1.61x10^(-19)ko = 2.46](https://img.qammunity.org/2020/formulas/chemistry/college/o4r0k189agiggvs0goozo6r16tn9tdf18z.png)
ko =
J/mol