232k views
1 vote
Use matrices and elementary row to solve the following system:

5x - 3x + 2x =13
2x - y - 3z =1
4x - 2y + 4z =12

User Mahesh M
by
5.0k points

1 Answer

6 votes

I assume the first equation is supposed to be


5x-3y+2z=13

and not


5x-3x+2x=4x=13

As an augmented matrix, this system is given by


\left[\begin{array}ccc5&-3&2&13\\2&-1&-3&1\\4&-2&4&12\end{array}\right]

Multiply through row 3 by 1/2:


\left[\begin{array}ccc5&-3&2&13\\2&-1&-3&1\\2&-1&2&6\end{array}\right]

Add -1(row 2) to row 3:


\left[\begin{array}ccc5&-3&2&13\\2&-1&-3&1\\0&0&5&5\end{array}\right]

Multiply through row 3 by 1/5:


\left[\begin{array}c5&-3&2&13\\2&-1&-3&1\\0&0&1&1\end{array}\right]

Add -2(row 3) to row 1, and add 3(row 3) to row 2:


\left[\begin{array}c5&-3&0&11\\2&-1&0&4\\0&0&1&1\end{array}\right]

Add -3(row 2) to row 1:


\left[\begin{array}ccc-1&0&0&-1\\2&-1&0&4\\0&0&1&1\end{array}\right]

Multiply through row 1 by -1:


\left[\begin{array}ccc1&0&0&1\\2&-1&0&4\\0&0&1&1\end{array}\right]

Add -2(row 1) to row 2:


\left[\begin{array}ccc1&0&0&1\\0&-1&0&2\\0&0&1&1\end{array}\right]

Multipy through row 2 by -1:


\left[\begin{array}c1&0&0&1\\0&1&0&-2\\0&0&1&1\end{array}\right]

The solution to the system is then


\boxed{x=1,y=-2,z=1}

User CoreyRS
by
5.7k points