64.3k views
2 votes
(Discrete Mathematics) If m and n are nonzero integers, show that (2m+3n)/5mn is a rational number.

User Cole Reed
by
4.5k points

1 Answer

0 votes

Answer:


((2m+3n))/(5mn)=(2)/(5n)+(3)/(5m) is a rational number for any m and n; nonzero integers.

Explanation:

We have been given that 'm' and 'n' are nonzero integers. We are asked to show that
((2m+3n))/(5mn) is a rational number.

We can rewrite our given number as:


(2m)/(5mn)+(3n)/(5mn)

Cancelling out common terms:


(2)/(5n)+(3)/(5m)

Since 'm' and 'n' are nonzero integers, so each part will be a rational number.

We know that sum of two rational numbers is always rational, therefore, our given number is a rational number.

User Sudarshan Kalebere
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.