Answer:
![f(x)=x+(x^(3))/(3)+(2x^(4))/(3)....](https://img.qammunity.org/2020/formulas/mathematics/college/9s3ffjrz0z2qs5y0cwl3psv9k07j85uhma.png)
Approximate error = 0.4426
Explanation:
f(x)=tanx, a=0
Maclaurin series formula used is given below
![f(x)=\sum_(n=0)^(\infty)(f^((n))(0)x^(n))/(n!)=f(0)+f'(0)x+(f''(0))/(2!)x^(2)+(f'''(0))/(3!)x^(3)+....](https://img.qammunity.org/2020/formulas/mathematics/college/gnds3ev790sdn6ut1bag3qnt4em5ejaraz.png)
f(x)=tanx
f(0)=tan0=0
![f'(x)=sec^(2)x\\f'(0)=sec^(2)0=1\\f''(x)=2sec^(2)xtanx\\f''(0)=2sec^(2)0tan0=0\\f'''(x)=-4sec^(2)x+6sec^(4)x\\f'''(0)=-4sec^(2)0+6sec^(4)0=-4+6=2\\](https://img.qammunity.org/2020/formulas/mathematics/college/1mzwex5rcerfmbkgmmx4gqio6mj9tinkh5.png)
![f''''(x)=-8(2sec^(2)xtan^(2)x+sec^(4)x)+24(4sec^(4)xtan^(2)x)+sec^(6))\\f''''(0)=-8(0+1)+24(0+1)=-8+24=16\\](https://img.qammunity.org/2020/formulas/mathematics/college/a0yfv6jc607rhjkqadszk3hvyv7ifz2pef.png)
![f(x)=0+x+0+(2x^(3))/(3!)+(16x^(4))/(4!)\\](https://img.qammunity.org/2020/formulas/mathematics/college/kv6b74tnh4w7dnoujmt63zhjv9i095cjel.png)
![f(x)=x+(x^(3))/(3)+(2x^(4))/(3)\\](https://img.qammunity.org/2020/formulas/mathematics/college/v5tfy65vuegh63hq8i5u3wyqlxxftxi2jb.png)
Hence, the Taylor series for f(x)=tanx is given by
![f(x)=x+(x^(3))/(3)+(2x^(4))/(3)....](https://img.qammunity.org/2020/formulas/mathematics/college/9s3ffjrz0z2qs5y0cwl3psv9k07j85uhma.png)
Maclaurin series upper bound error formula used is given as
R_n(x)=|f(x)-T_n(x)|
R_3(x)=|tanx-T_3(x)|
![R_3(x)=|tanx-x-(x^(3))/(3)-(2x^(4))/(3)|](https://img.qammunity.org/2020/formulas/mathematics/college/uo1pwsn96lj933an3a4a5igley2zvx2sng.png)
Plugging this value x=1
![R_3(x)=|tan(1)-1-(1)/(3)-(2)/(3)|\\](https://img.qammunity.org/2020/formulas/mathematics/college/wqiaz45xf9e7mk50rchqa94arocosjvxe4.png)
R_3(x)=|1.5574-1-0.333-0.666|
R_3(x)=|-0.4426|=0.4426
Hence, upper bound on the error approximation
tan(1)=0.4426