197k views
4 votes
Use the binomial theorem to compute (2x-1)^5

User TMS
by
8.1k points

1 Answer

4 votes

Answer:

The expended form of the provided expression is:
32x^5-80x^4+80x^3-40x^2+10x-1

Explanation:

Consider the provided expression.


(2x-1)^5

The binomial theorem:


(a+b)^(n)=\sum _(r=0)^(n){n \choose r}a^(n-r)b^r

Where,


{n \choose r}= ^nC_r =(n!)/((n-r)!r!)

Now by using the above formula.


(5!)/(0!\left(5-0\right)!)\left(2x\right)^5\left(-1\right)^0+(5!)/(1!\left(5-1\right)!)\left(2x\right)^4\left(-1\right)^1+(5!)/(2!\left(5-2\right)!)\left(2x\right)^3\left(-1\right)^2+(5!)/(3!\left(5-3\right)!)\left(2x\right)^2\left(-1\right)^3+(5!)/(4!\left(5-4\right)!)\left(2x\right)^1\left(-1\right)^4+(5!)/(5!\left(5-5\right)!)\left(2x\right)^0\left(-1\right)^5


2^5\cdot \:1\cdot \:1\cdot \:x^5-1\cdot (2^4\cdot \:5x^4)/(1!)+1\cdot (2^3\cdot \:20x^3)/(2!)-1\cdot (2^2\cdot \:20x^2)/(2!)+1\cdot (5\cdot \:2x)/(1!)+1\cdot (\left(-1\right)^5)/(\left(5-5\right)!)


32x^5-80x^4+80x^3-40x^2+10x-1

Hence, the expended form of the provided expression is:
32x^5-80x^4+80x^3-40x^2+10x-1

User Vicky Vicent
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories