For making mathematical induction, we need:
An
for which the relation holds true
if its true for
, then, is true for
![n_(i+1)](https://img.qammunity.org/2020/formulas/mathematics/college/c8e5nhtu189u8ms5mkuhf0rq5tpcun1fra.png)
base case
the relationship is not true for 1 or 2
![1^3-1 = 0 < 4*1](https://img.qammunity.org/2020/formulas/mathematics/college/6n1w58hzzob75tqkohn4z9dmx8xxo0aobx.png)
![2^3-1 = 8 -1 = 7 < 4*2 = 8](https://img.qammunity.org/2020/formulas/mathematics/college/b847wdf5c8rday0jwdi8dcyxs3oqqqrxf9.png)
but, is true for 3
![3^3-1 = 27 -1 = 26 > 4*3 = 12](https://img.qammunity.org/2020/formulas/mathematics/college/frb2ex54li1cq501pzsioi8dbp4xi38go6.png)
induction step
lets say that the relationship is true for n, this is
![n^3 -1 \ge 4 n](https://img.qammunity.org/2020/formulas/mathematics/college/h3fswhuppgg3sos4zcnued8mkon5e80ov5.png)
lets add 4 on each side, this is
![n^3 -1 + 4 \ge 4 n + 4](https://img.qammunity.org/2020/formulas/mathematics/college/h0db1xhzqkisu7zewn4wamlfc0sjerka0u.png)
![n^3 + 3 \ge 4 (n + 1)](https://img.qammunity.org/2020/formulas/mathematics/college/pt1vkm20dlpyjv4le1verot32a41iavujf.png)
now
![(n+1)^3 = n^3 +3 n^2 + 3 n + 1](https://img.qammunity.org/2020/formulas/mathematics/college/yvg5w7b14e5gh9x3idxwegs497806ixwfv.png)
![(n+1)^3 \ge n^3 + 3 n](https://img.qammunity.org/2020/formulas/mathematics/college/t9yo8sljwawzpp7k5lgso0j6xxezd70gjp.png)
if
then
, so
![(n+1)^3 \ge n^3 + 3 n \ge n^3 + 3](https://img.qammunity.org/2020/formulas/mathematics/college/9wj4upwzfg3vrt80tljqdtaz7jm5jdyzy9.png)
![(n+1)^3 \ge n^3 + 3 \ge 4 (n + 1)](https://img.qammunity.org/2020/formulas/mathematics/college/r9w509zomub9kzaa4eolduedkz8jzcupja.png)
![(n+1)^3 \ge 4 (n + 1)](https://img.qammunity.org/2020/formulas/mathematics/college/p7w46vc3i6bdv0kzf7yi5gb9ax7jf60lio.png)
and this is what we were looking for!
So, for any natural equal or greater than 3, the relationship is true.